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SUMMARY 

We give an overview of some recent results concerning quantitative adaptive error control in CFD. 
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1. INTRODUCTION 

Adaptive error control in CFD concerns the fundamental problem of computability of fluid flow. 
A flow is computable with a given amount of computational power if a sufficiently accurate 
solution can be computed solving the Navier-Stokes equations numerically using a computer. 
Fluid flow may be complex with the complexity and computational difficulty in general increas- 
ing with increasing Reynolds number. 

Adaptive error control aims at automatically controlling the discretization error for a given 
problem in a given norm on a given tolerance level. Ideally the error control should be (i) reliable 
in the sense that the desired error control is guaranteed and (ii) efficient in the sense that the 
required computational work is close to minimal. Adaptive error control and computability are 
intimately coupled because (i) reliable quantitative error control is required to verify computabil- 
ity and (ii) efficient use of computational resources is required if limits of computability are 
touched. 

It is a surprising fact that computability and quantitative error control has received little 
attention in the theory and practice of numerical methods for differential equations including 
CFD over the years starting in the 1950s these subjects have been developed, despite the clearly 
fundamental importance of the concepts. It is clearly essential to be able to distinguish cases with 
computational errors of order, e.g. 1-10 per cent from cases with large errors which cannot have 
any meaning. The purpose of adaptive error control is to identify accurate computations and to 
realize efficient use of computational resources to meet accuracy demands. The limits of computa- 
bility in CFD is today largely unexplored; 3D flows with moderately large Reynolds numbers of 
order up to say lo3 may be computable over time intervals of moderate length, while for higher 
Reynolds numbers, turbulence modelling of small scales is necessary to effectively reduce the 
Reynolds number to computable ranges. The purpose of this paper is to give some concrete 
information on the question of computability in CFD. 

In recent work presented in monograph form in Reference 1, see also References 2-11 and 
references therein, we have developed a general method for adaptive error control for finite 
element methods for a large class of differential equations including the Navier-Stokes equations 
for fluid flow. The adaptive error control is based on a posteriori error estimates involving the 
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computed finite element solution, or more precisely the residual of the finite element solution. The 
residual is obtained inserting the computed approximate solution into the given differential 
equation. The a posteriori error estimates are based on a combination of the Galerkin ortho- 
gonality inherent in the finite element method and strong stability. Here, strong stability is the 
relevant stability concept coupling the error in the computed solution to the residual through 
a multiplicative strong stability factor denoted by S, below. The strong stability factor S1 is 
estimated computationally in auxiliary computations solving an associated linearized dual 
problem. The computational difficulty of achieving a given accuracy is proportional to S1. If S1 is 
too large, then computability cannot be realized. The computational estimate of S, ,  which is built 
into the adaptive algorithm, is the necessary and sufficient ingredient making quantitative error 
control possible to realize. The adaptive method is implemented in prototype form in the code 
Femlab including applications to elliptic, parabolic and hyperbolic problems. 

The methodology of Eriksson et al.' is based on Galerkin methods with piecewise polynomials 
in space-time. In particular, time discretization comes in two forms, continuous Galerkin cG(q) 
and discontinuous Galerkin dG(q) methods based on piecewise polynomials in time of order q, 
which are continuous or discontinuous, respectively. 

In this note we first recall the basic principles of the general methodology for adaptive error 
control in Reference 1 in the context of an initial value problem. In particular, the role of the 
strong stability factor S , ,  which appears as a multiplicative constant in the a posteriori error 
estimate underlying the adaptive algorithm, is made transparent. We then consider two particular 
applications illustrating different basic aspects: (i) the Lorenz system of ordinary differential 
equations' ' and (ii) Navier-Stokes equations for incompressible flow in three For 
these problems we present theoretical and computational estimates of the stability factor S, 
together with results illustrating the performance of the algorithm for adaptive error control. 

For the Lorenz system we present results from Reference 11 showing that in the typical case 
considered in the literature, S1 is of the order lo9 on time intervals of the order 30 units, which is 
at the limit of computability with a standard workstation. We discuss briefly the possibilities 
opened by accurate computation over moderate time and the apparent impossibility of pointwise 
prediction and computation over long time. 

Concerning the Navier-Stokes equations, we note that the traditional theoretical foundation in 
CFD gives little guide-line concerning the possible computability of the Navier-Stokes equations. 
The traditional error estimates (of a priori type) contain stability factors multiplying interpolation 
or consistency errors which typically are of size exp(Re) in situations of interest, where Re is the 
Reynolds number, cf. Reference 12. If this was an accurate estimate, then computability would be 
excluded also for relatively small Reynolds numbers. This is in conflict with computational 
experience which strongly indicate that many flows with moderately large Reynolds numbers in 
the range 102-103 in fact are computable over moderately large time intervals. Thus, the existing 
error analysis in CFD does not appear to reflect the nature of actual computations except 
possibly in the case of fully developed turbulent flow over moderately large time intervals, which 
does not appear to be computable. 

In References 6 and 7 we have identified some basic flows for which computability indeed can 
be proved theoretically by showing that the stability factor S, is proportional to Re instead of 
exp(Re) on time intervals of length Re. Analogous estimates for stationary flows are given in 
Reference 8. These flows include almost parallel flows in different settings such as Couette flow, 
Poiseuille pipe flow and Taylor-Couette flow between rotating cylinders. Our corresponding 
error estimates (of both a priori and a posteriori type) indicate that highly organized flow such as 
almost parallel flow is computable for Reynolds numbers up to say order lo3 over relatively long 
time intervals. Our error estimates appear to be sharp and to describe the actual size of the error. 
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In this note we present additional computational estimates of the strong stability factor S, for 
driven cavity flow in three dimensions. 

An outline of the paper is as follows. We first consider as a model an initial value problem for 
system of ordinary differential equations and prove for this case an a posteriori error estimate for 
the dG(0)-method. The proof displays in simple proto-type form the interplay between strong 
stability and Galerkin orthogonality. We then present computational results for the Lorenz 
system and the incompressible Navier-Stokes equations. 

2. ADAPTIVE ERROR CONTROL FOR AN INITIAL VALUE PROBLEM 

We shall illustrate the principle for adaptive error control for the dG(0)-method for an initial 
value problem of the form : Find u = u( t )  such that 

u, + f ( t ,  u)  = 0 for t > 0 

u(0) = uo 

wheref(t, .) :  H --$ H is a given vector field for t > 0 with H a Hiibert space and u, = du/dt. For 
simplicity, we consider the case H = Rd where Rd is Euclidean space of dimension d,  but the 
results directly extend to infinite-dimensional systems such as the incompressible Navier-Stokes 
equations, see Reference 8. The dG(0)-method for (1) is defined as follows letting Tk: 
0 = to < t ,  < t 2  < . . . be a subdivision of the time interval (0, 00) into time intervals 
I, = ( tn-  tn)  of length kn = t, - t,- and introducing the corresponding space wk of discontinu- 
ous piecewise constant functions on Tk with values in R d :  Find U E  wk such that for all 
U E  [Po( I , ) ]d ,  n = I ,  2, . . . . ,. 

l1,(ut + f ( t t  u))udt + c u n - I ~ U n + - ,  = O  (2)  

u( tn  + s), U ;  = uo,  and Po(Z,) is the set of constant where [u,] = (u: - u,-), u' = I h +  
functions on I , .  Using the notation U, = UI,,, the dG(0)-method (2) takes the form 

U ,  - U,-l + I I n f ( t ,  U,)dt = 0 for tz = 1,2,. . . , ( 3 )  

where U o  = uo. This is a variant of the classical backward Euler method with exact evaluation of 
the integral with integrandftt, U ) .  In case exact evaluation of this integral is not feasible, we may 
use quadrature for example of the form 

Note that the classical backward Euler method uses instead the approximation k , f ( t " +  ', U,) of 
inferior precision at no gain of computational complexity, see Reference 13. 

2.1. A n  a posteriori error estimate 

at the given time t N ,  N 2 1, we introduce the continuous dual 'backward ' problem 
To derive an a posteriori error estimate for the error e N  = u(tN) - U N  in the dG(O)-method ( 2 )  

- q, + A ( t ) * q  = O in (0, t w ) ,  c p ( t N )  = eN (4) 
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where A *  is the transpose of A and 
f l  

A(t)  = J f '(t, su + (1 - s)U)ds 
0 

so that 

A ( t ) e  = j: f ' ( t ,  su + (1 - s)U)eds 

= 1; f ( t ,  su + (1 - s)U)ds = f ( t ,  U) - f ( t ,  U )  

wheref'(t, . )  is the Jacobian off(t, .). We have integrating by parts and using the exact equation 
( 1 )  

N 

leNI2 = leNI2 + e( - qt + A*q)dt 
n =  1 6" 

N -  1 5 l I n ( e t  + ~ ( t ) e ) c p d t  + c [enlqn+ + ( u g  - ~:)q: 
n =  1 n =  1 

\ 

Using now the Galerkin orthogonality ( 2 )  with u = n , q ~  W, defined by 

( ~ p  - nkq)dt = 0, n = 1,. . . , N 6. 
we obtain since U ,  = 0 on 1, the following error representation: 

Using now the easy to prove interpolation estimate 

we see that 

~ e N ~ 2 < J ~ ~ c p t ~ d ~  max (1[un-111 + k n l l f ( . , U n ) l \ I n )  
n = 1 ,  . . . ,  N 

where IIuIII, = maxIn Iu ( t ) l .  Finally, defining the strong stability factor S(t,, U, U )  by 

where cp satisfies - q, + A( t )*q  = 0 in (0, t,),we arrive at the following a posteriori error estimate 
for the parabolic model problem (I) ,  using also the definition of nk to replacefbyf- n k f :  
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Theorem 2.1. The solution U of the dG(0)-method (2) satisfies for  N = 1,2,  . . . , 

l U ( t N ) -  U N I  d S ( t N ? u , U )  n = l , .  max . . , N ( l U n -  u n - l l  + knIlf-nkf(’, Un)llJn ) (7) 

2.2. Adaptive algorithm 

the given tolerance level TOL > 0: Determine for n = 1,2,  . . . , N the timesteps k ,  such that 
Based on (7) we formulate the following adaptive algorithm for controlling the error e ( t N )  on 

S(tN,% U ) ( \ u n -  11,-11 + k n / I f ( . , ~ ~ , ) - n , f ( . , U n ) I l ~ ~ ) = T O L  

In practice the strong stability factor S( tN,  u, U ) is estimated solving the linearized dual problem 
(4) numerically replacing the unknown exact solution u appearing in the definition of A ( t )  by 
a computed approximate solution. The initial data q ( t N )  may be chosen in different ways, one 
possibility being the difference between two computed solutions with different tolerances, see 
References 10 and 1 1 .  To control the error e ( t N )  to the tolerance TOL for N = 1,2, . . . , M ,  the 
time steps are chosen so that 

S M ( u ) ( l  Un - un- 1 I + k n  I /  f (‘, un) - nkf ( ‘ 3  u n )  I l J , , )  = = 1, 2, . . . 9 M 

where S M ( U )  = maxN= 1 , 2 , .  , , S( tN ,  U ,  U ) .  The implicit nature of this algorithm with U 
depending on the k ,  is typically handeled solving the discrete problems two times over the entire 
time interval (0, t M ) ,  see e.g. Reference 1 1  for details. 

We now present results for the Lorenz system from Reference 1 1 obtained applying the dG( 1) 
in adaptive form analogous to that just presented for dG(0). 

3. COMPUTABILITY O F  THE LORENZ SYSTEM 

The Lorenz system is the following three-dimensional system of ordinary differential equations: 

i= -cTx+cTy 

J ; =  - r x - y - x z  

i =  - b z + x y  

x ( 0 )  = xo,  Y(0) = yo ,  4 0 )  = 20 

where c ~ ,  r ,  and b are positive constants and (xo ,  y o ,  z o )  is a given initial condition. This system was 
originally derived from a coarse spectral approximation of the Benard problem for incompress- 
ible flow and is considered to reflect properties of the flow models of meteorology. We consider 
the Lorenz system in the standard case with IT = 10, b = 8, and r = 28. System (8) then has 
a hyperbolic fixed point at (0, 0,O) with one-dimensional unstable manifold, and two hyperbolic 
fixed points at (x, y ,  z )  = ( f 62/2,  & 6$, 27) with one-dimensional stable manifolds. In Figure 
1 ,  we present two views of a typical trajectory starting at (1,0,0) computed with an absolute error 
tolerance of 0.5 in the Euclidean norm on the time interval [O, 301. Generic solutions started near 
(0, 0,O) are repelled and end up revolving around the two non-zero fixed points, changing from 
one to the other with a seemingly random number of revolutions around each fixed point. 

More precisely, Figure 1 indicates that the attractor consists, roughly speaking, of two ‘lobes’ in 
which the orbits around the non-zero fixed points are located. In each lobe, the spiraling segments 
of the trajectory seem to be grouped in ‘bands’ that are made up of parts of the trajectory that are 
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Figure 1. (-yo, y o ,  2 0 )  = (1,0,0), final time = 30 absolute error tolerance = 0 5 .  

spiralling out from the fixed point and parts of the trajectory that have just crossed over from the 
other lobe. Only the trajectories in the outer band switch to the other fixed point. This causes 
a sharp separation between trajectories located in the outer band and those located in the next 
band inside as the trajectories approach the z-axis (cutting). The trajectories in the outer band 
expand in width as they approach the other fixed point, with trajectories near the outside of the 
band ending up nearer to the fixed point (expansion and flipping). Finally, trajectories approach- 
ing one lobe, quickly get interlaced with the trajectories already spiralling in the lobe. In short, we 
can describe the dynamics of the Lorenz system as a never-ending process of cutting, expansion, 
flipping and interlacing. The cutting and expansion clearly introduces a strong sensitivity to 
perturbations making both prediction or computation over long time impossible. Questions 
concerning the long-time behaviour of the Lorenz system in a pointwise sense, or the more precise 
nature of the so-called ‘strange attractors’ therefore seem impossible to answer by computation 
(and probably also by theoretical means). Accurate computation over finite time, on the other 
hand, has the potential of supplying a wealth of information on the nature of solutions of the 
Lorenz system. For more details, see Reference 11. 

In the literature, the Lorenz system is typically considered to be computable only on very short 
time intervals. For example, the standard ‘worst-case’ estimate limits the computability to less 
than one time unit. We are able to obtain an accurate computation over 30 time units because 
though the Lorenz system is data sensitive, the error actually grows much more slowly than 
indicated by a crude worst case a priori estimate. In Figure 2, we plot the stability factor Sl(t, u)  
computed every 0.5 time units for a typical solution u = (x, y ,  z). Note that S1 grows with time, 
but not monotonically, and that S1 is of order lo9 for t = 30, which time the error control is lost. 

To evaluate the reliability of the adaptive error control, we performed the following experi- 
ment: Using the initial data ( = - 8.05, - 9.35, 25.6), we computed with residual tolerances of 
lo-’ and We then computed an approximate error by taking the difference between the 
more accurate and the less accurate solution. In Figure 3(a), we plot the approximate error 
computed this way and the computed error form the adaptive computation with the coarse 
tolerance We note a close comparison between the computed and the approximate error. 
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Figure 2. (xo, yo, zo) = (1,0,0), absolute error tolerance = 0.5 
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Initial data: (a) (xo, yo, zo) = ( - 8.05, - 9.35,256). (b) Computa- 

tion with decreasing residual tolerance ( ~ ) residual tolerance = (xo, yo. zo) = (l,O, 0) 

We obtained similar results for a variety of initial data. In Figure 3(b), we plot the x component of 
computations made with decreasing residual tolerances. We have indicated the points in time at 
which the successive computations with decreasing tolerances diverge from the correct solution. 
The presented results strongly indicate that indeed the adaptive error control performs as desired. 

To give some idea of the behaviour of the time step control, we plot the time steps used in 
a computation with absolute error tolerance 0.75 in Figure 4(a). The step sizes vary roughly by 
a factor of 6 over the total interval of computation. In Figure 4(b), we plot the residual errors for 
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this computation. We note that these values are kept within 10 per cent of a constant value. With 
more computational work, the size of the variations can be reduced, which produces a more 
smoothly varying error bound. 

To give some idea of the accuracy of the computed stability factors, we plot S1 ( t )  computed for 
various tolerances in Figure 5. As indicated in Figure 3(b), the trajectories agree up to time 17, 
then begin to diverge one by one from the most accurate trajectory. In the time period [0, 171, the 
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value of S1 (t) is essentially the same for all computations. On the whole interval, we see that the 
magnitude of the stability factors is relatively insensitive to the particular trajectory used in the 
linearization. Of course, there is some local variation since at any given moment, some trajecto- 
ries are orbiting a non-zero fixed point while others are crossing over from one nonzero fixed 
point to the other. 

4. COMPUTABILITY OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

4.1. General remarks 

Existing error estimates for the non-stationary Navier-Stokes equations over relevant time 
scales, typically involve estimates of stability factors of the order exp(Re), where Re is the 
Reynolds number. If these estimates would reflect actual stability properties, fluid flow would 
only be computable for Reynolds numbers up to say 10. This contradicts computational practice 
which indicates computability of several flows of moderate Reynolds numbers of order up to 
103-104. In References 6 and 7 we have identified certain model flows related to almost parallel 
flow where the strong stability factor can be theoretically estimated by instead C Re with 
a relatively small proportionality constant C. Computational results supporting these estimates 
indicating that C - 0.02 for Pouiseuille flow between two plates (with a somewhat differently 
defined stability factor), are given in Reference 14. These results indicate that error control for 
certain flows of moderate Reynolds number of order say 102-104 may be possible to achieve. 

For the stationary Navier-Stokes equations the situation is analogous. The existing error 
analysis does not include accurate estimates of stability factors. The current standard in theoret- 
ical analysis is simply to assume a certain stability estimate involving a completely unspecified 
constant, see e.g. References 12. This results in an error analysis without any quantitative aspect, 
which may have little meaning in a particular application. In Reference 8 we have identified some 
cases related to almost parallel flow for which it is possible to prove theoretically that the strong 
stability factor is again proportional to the Reynolds number, showing computability of such 
flows for moderate Reynolds numbers. 

To illustrate the general principles of adaptive error control we derive below an a posteriori 
error estimate for the stationary Navier-Stokes equations. We also present computational 
estimates of the strong stability factor S1 for driven cavity flow in three dimensions for Reynolds 
numbers in the range 102-103. 

It is important to note that the stability properties of the Navier-Sokes equations in 2D and 3D 
may be vastly different, see e.g. References 6 and 15. Since real fluid flow is three-dimensional, 
only computations in 3D can reflect the stability properties real fluid flow. This is in particular 
important in transition to turbulence where a full 2D computation may be incapable of capturing 
the essential 3D nature of the transition process, see References 6 and 7. 

4.2. The stationary Navier-Stokes equations 

The stationary incompressible Navier-Stokes equations read: Find (u, p )  such that 

(u.V)u - vAu + Vp =f in R 

V . u = O  i n R  (9) 

u = O  ondR 
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where u = ( u l ,  u 2 ,  u 3 )  and p are the velocity and the pressure of a Newtonian fluid with viscosity 
v > 0, enclosed in the volume R in R’, and f is a given driving force. We assume that (9) is 
normalized, without loss of generality, so that the ‘reference’ velocity U and length scale L are 
both equal to one. The Reynolds number Re is then by definition given by Re = ULv-‘ = v - l  
(where v is to be understood as a dimensionless quantity). We consider here the case with Re 
moderately large, say in the range 10-104, in which case (9) may be expected to have a physically 
significant stationary solution under suitable conditions on the data. 

Introducing the space e = V x H ,  where V = H;[(R)l3 and H = L,(R)/R, we give the prob- 
lem (9) the following variational formulation: Find ti = (u, p ) ~  e such that 

A(u; ti, 0 )  = L(u) v0 = (u, q ) E  e (10) 

where, with $ = (w, r), 

A(u; 4, 0) = a(w, u) + b(u; w, u)  - (r, V .  u) + (q, V .  w) 

b(u; W, U) = (U.V)W.udx b 
0 i = l  

We denote below by 1 1 .  I /  the [L2(R)]’-norm. 

4.3. Finite element approximation 

To formulate a finite element method for (9), let Vh and H h  be finite-dimesional subspaces of 
V and H consisting of continuous piecewise polynomials on a triangulation Th = ( K }  of R into 
elements K of diameter hK given by the mesh function h(x) = hK for x E K .  For simplicity we 
assume that the pair ( V h ,  H h )  satisfies a usual Babuska-Brezzi condition. We recall that with 
least-squares stabilizations, the spaces V,, and H h  may alternatively be chosen independently, for 
instance equal order continuous approximations. For definiteness, we assume that v h  contains 
piecewise linears and H h  piecewise constants. 

We consider the following standard Galerkin finite element method for (10): Find ti,, - 
= (uh, P h ) E  Vh E ( V h ,  H h ) ,  such that 

a 

A ( U h ;  B h ,  0) = F(u)  Vfi = (u, q ) E  Vh (1 1) 

4.4. A posteriori error estimate 

that used above involving the following steps: 
We shall now prove an a posteriori error estimate for (1 1 )  following an approach analogous to 

(1) Error representation via a linearized dual continuous problem. 
(2) Use of the Galerkin orthogonality. 
(3) Interpolation error estimates for the dual solution. 
(4) Strong stability for the dual continuous problem. 

We represent the error e = u - a h ,  through the solution @I E (cp, x) of the following dual linearized 
problem: Find @ I €  p, such that 

L(#,  uh; 6, @) = (u, K )  VfiE V (12) 
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where ti = e, and 

L(u, U ;  & @ )  = - ((u.V)cp - VU.cp, v )  + a(cp, v )  + (Vx, v )  - (Vq, cp). (13) 
Note that L(u, U ;  . , * )  represents the dual linearized Navier-Stokes equations linearized 'between' 
u and U so that 

A(u; a, @) - A ( U ;  G,@) = L(u, U ;  &, @). 

Choosing now v = e in ( 1  2) and integrating by parts gives 

1le11~ = L(U, U ;  2, 4) = ~ ( u ;  a, @) - A ( U ;  i7,@) 
= F ( @ )  - A ( U ;  r?, 6) = F ( @  - @ h )  - A ( U ;  i7, @ - @ h )  

= ( ( u ' v ) u  - f + vph,  cp -- qh) + (VvU, v(cp - qh) )  + ( v ' u ,  x - x h )  
where Gh = (cph, x h ) €  $h is a nodal interpolant of @. 

We now define the strong stability factor S1 (u, U )  to be the smallest constant satisfying 

IIVxII + IIvD2cpIl G Sib, U)Iltill V'ELZ(Q) 

where @ satisfies (12). Using this definition together with relevant interpolation estimates for 
@ - @ h  in particular of the form 

/ I  - ( P h  11 d c' 11 h2D2 cp 1 1  
where D2v denotes the second derivative of v of maximal modulus, we now obtain the followng 
a posteriori error estimate, see References 1 and 3 for more details. 
Theorem 4.1.  Let u and U be the solutions of the exact and discrete Navier-Stokes equations (9) and 
( 1 1 ) .  Then 

IIu-uhII d c i s l ( u ,  u ) ( l l v - ' h 2 R l ( U ) l l  + I l h R 2 ( U ) I I )  (15) 

where 

R l ( U ) I K = I ( U . V ) U p h - V A U - f l  +IvDh2UI OnK 

R 2 ( U )  = IV. U I 
Here 

where [av/an,] is the jump in normal derivative dv/dns across the side 3 of the element K E Th.  
The crucial question is now the size of the stability factor S1 (u, U ). In Reference 8 we proved for 

a model problem of nearly parallel streamwise constant pipe flow that S1 - Re an estimate which 
appears to be sharp in the dependence on Re, see also Reference 14. The proof is based on simple 
'energy' estimates using the decoupled nature of the linearized problem in the case of nearly 
parallel flow. 

4.5. Computational estimates of S 1  for the driven cavityflow 

We have computed approximations of the strong stability factor S1  for the 3D driven cavity 
flow in a box of side 1 with the tangential fluid velocity equal to one on the top of the box. For 
Reynolds numbers 100, 200, 300, 400, 500, 600 and 700, we obtained the following values of 
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S1: 1.48, 1-60, 1.60, 1.60, 1.56, 1.55, 1.50. The corresponding estimated relative L2 errors in the 
velocity were 0~15,027,038,048,058,0~69,0~80 using adapted meshes with approximately 2200 
nodes and piecewise linear approximation. For Reynolds numbers up to 700 the strong stability 
factors seems to be of moderate size indicating computability in this range. The presented results 
are preliminary and will be followed by extensive numerical experiments to be published 
elsewhere. 

5. CONCLUSION 

We have presented some basic features of adaptive error control. Adaptive algorithms for 
quantitative error control for finite element methods may be designed in large generality 
including fluid flow by combining Galerkin orthogonality and strong stability. The estimates 
include a strong stability factor S1 which is estimated computationally solving an associated 
linearized dual problem. The computational difficulty of a given problem is proportional S1.  
A certain class of problems in CFD with moderately large Reynolds numbers appears to be 
computable because S1 is of moderate size. For larger Reynolds numbers, S1 may become so large 
that computability is not realized. In these cases turbulence modelling is necessary to effectively 
reduce the Reynolds number to computable ranges. Accurate computation over finite time in 
massive benchmark calculations may open possibilities of designing and evaluating turbulence 
models to be used in production runs requiring less massive computational effort. 
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